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I. I TRODUCTION

Free electron lasers (FEWe) based on stimulated scattering from

relativistic electron beams show great potential for becoming a new class

of efficient devices capable of generating intense levels of coherent

radiation. This class of FELs is characterized by a pump or wiggler

field which is typically a spatially periodic magnetic field.

The magnetic wiggler field can be either linearly or circularly

polarized. A circularly polarized wiggler is somewhat simpler to analyze

because the axial particle velocity, for a fixed amplitude and period

wiggler, is constant (independent of axial position). A linearly polari-

zed wiggler, on the other hand, introduces a spatially oscillating term

in the axial particle velocity. To our knowledge previous FEL analyses (1-32)

have either taken the wiggler to be circularly polarized or have

neglected the spatially oscillating part of the axial particle velocity

with a linearly polarized wiggler.

Many of the future FEL experiments will employ a linearly polarized

magnetic wiggler field. There are a number of practical advantages to this

type of wiggler as opposed to a circularly polarized wiggler. These

advantages are: i) relative simplicity of construction (which includes

axial variation of the amplitude and period of the wiggler), ii) somewhat

higher field amplitudes can be obtained and, iii) it is easier to obtain a

linearly polarized radiation source for anplification.

uawOept 6sbmMttd Aupuo 24,1961.
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11. PHASE COHERENCE

In this paper we analyze Lhe FEL in the steady state amplifying

configuration. Our model for the FEL consists of a one dimensional rela-

tivistic electron beam propagating through a linearly polarized spatially

periodic magnetic wiggler field BW(z), as shown in Fig. 1. The vector

potential associated with the linearly polarized magnetic pump is

z

A (z) a A,(z) sin k(s') , (1)~W fw y
0

where the amplitude Aw(z) and period I V(z) - 2TT /kw(z) are slowly varying,

known functions of z. The general temporal steady state radiation field

and electrostatic (Coulomb) field excited by the interaction of the electron

beam and wiggler field are respectively given by

A(z,t) - A(z) sin k(')dz' - t a (2a)

0

and

04.0~t - 1 co(f k(z') +k t(z')) dt' - wt)
0

+ 2Wsin(I(k(z') + k w (z')dz1 -wit)(b

where A,01 9 *2' and k are assumed to be slowly varying functions of z

compared to the radiation wavelength. Even for highly efficient MsL the

radiation field is typically much loe than the pump field, i.e.,

AI << Awl. In this section we will consider some of the characteristics

of a TEL with a linearly polarized magnetic pump field and take Aws kw and

k to be independent of axial position.
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In the presence of only the Wiggler field the electron velocity is

i v2 0,
Vy ao i w (3a-c)

vz
v , + cos 2 k

0

where v., - IeIAW/(Yomoc) is the magnitude of the transverse vigil. velocity,

V v - v2 A/4v is the average axial velocity, vo is the Vmanitude of

the total velocity, i.e., Yo a (1 - v2/C2)" . For the present it is suffi-

cient to say that the frequency of the radiation field is such that phase

coherence exists between the ponderomotive wave and the axial particle

motion. That is, the axial phase velocity of the ponderomotive wave and

the axial particle velocity must be matched so that an exchange of energy

between the particles and radiation field can take place. The phase velocity

of the ponderomotive wave is vp - w/(k + kw). By taking k - w/ and

equating vph to the average axial particle velocity voX, we find that the

radiation frequency is given by

w-ck - ( + B)y v k (4)
0 zo 0 V

*12 22

where yza Y2/(l + 02 2 /2) is the effective axial Samma factor,

o.- Vo /c. It will now be shown that the spatially oscillatory part of

the axial particle velocity, the second term of (3c), does not lead to phase

incoherence regardless of the magnitude or wavelength of the wiggler field.

The condition for phase coherence is

(k + kv) 6zos << n/2



where 6806 a 01 /Sk is the amplitude of the axial particle displacement

associated with thc spatially oscillatory part of the axial particle

velocity. Using (4) we find that

(k + kw) 6:06 - (l- (., + /2)-1) (, . (6)

and is always less than 1/2 and typically s 1/4. Hence, the phase coherence

condition in (5) is always satisfied even for arbitrarily strong pump fields.

Therefore, the oscillatory part of the axial particle velocity in a linearly

polarized pump can never result in phase incoherence.
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III. LINEAR AND NON-LINEAR THEORY

a. Non-Linear Self-Consistent Formulation

In this section we formulate the I-D non-linear theory of the FEL for

a linearly polarized wiggler field. We include in our formulation of the

U Iproblem: i) a spatially varying wiggler amplitude and period, ii) space

charge fields, and iii) a D.C. accelerating field E (z) - * o c/z e
ac ac z

The present formulation is similar to our previous treatment of the circu-

larly polarized wiggler problem.(26 ) We will show later that the applica-

tions of the D.C. accelerating field can modify the phase of the particles

resulting in enhanced efficiency.(33-36) This method is equivalent to

schemes in which the pump amplitude and/or period is varied as a function

of (26-28, 31)

The wave equations for A and * are

- - 2 A (Zt) - - J (z,t) , (7a)
c c y

and

32 0"z11 a - J (z,t) •
azat (.b

The driving currents, Jy and J z, are given by

y

J(z,t)- -Iejf f(zpt)d 3y ) " (8)

The thermal electron distribution function can be expressed in the following

form

5
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f(z,,t) - no f (uzo) S(z - (t, u zt))
o f f YO ( ZO) 0 ZO

- , (t u t))6 (pz - z(to, uzo, t)) dt du(y y(O'' Uz 0 zo

where n is the uniform particle density for z < 0, which is to the left of0

the interaction region and hence outside of the wiggler field, u = pzo/o / o

is the axial electron momentum for z < 0, g0 (uzo) is the distribution function

associated with the initial spread in axial electron momentum, T(tduzo,t)

is the axial position at time t of the particle which crossed the z - 0

plane at time t with axial momentum p and -(t , uzo, t) is the momentum
0 '- ~0 o

vector at time t of the particle which crossed the z - 0 plane at time t

with axial momentum pzo. Substituting (9) into (8) and carrying out the

integration over momentum, the driving current becomes

®u (to,Uzo,t)

J(zt)= -eln ff u go(Uzo) ,u 0t (10)Yo(Uzo ) g z(toUo)
0 zo Pz 0 uZo"

6(t - T(t 0 o " , z)) dt0  duzo ,

where

Z

T(tUzo, Z) - t 0 + f dz'

0 V z (t0 ,Uzo,Z')

is the time it takes a particle to travel to position z if it crossed the

z-0plane at time t with momentum p M Note that 'i
ax0a ve0 of 2 p a ti l 0 it tie

axial velocity of the particle with initial conditions t 0, u 20.
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Following the method presented in Ref. (26), we obtain the equations

governing the amplitude and wavenumber of the radiation field and space

charge field. Substituting (10) into (7), and multiplying the electromagnetic

sin
wave equation by ( f(k(z') dz' - .it) and the electro-static wave equa-

4 tion by sin (f(k (z') + kw(z))dz' - wt) and intexrating over one time period,
Cos V

we obtain the following equations for A(z), k(z), *1 (z), and 2(z),

-~ Az)- ]Z
( ZC j 2 =c -WfY ( O

[" /c (touzoZ)
(z) (to, o,+ A(z) dUUa)L ,,t, u,, ,z,) ./ o

2 u 9_(u~o
az =C Yo0(U zo

A .(Z) s V(tuzo3Z) du 0  (lb)

0 Z0

00Zo, o o. , ,) (lc

W 2) 2 2am g (u < tuu

b c 0 zo 0zo <CsTt0' oz) du9 (1c

1(z ) 27 YO 0

2 2 c u
'% c 0 zoo0 zo

2 Z) 2 - J Cu) T.n *(t ,U 0,z), duag (Uld)

where % - (411e1 2n0 m0 )
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211 /w&

= f dto(--) and f(t .o - kz ) * kwz') + k W)

0 0

is the phase of the electron with respect to the beat wave

(ponderomotive wave). If the electron beam can be considered to have negli-

gible spread in axial momentum, upon entering the interaction region, we mav

replace g0 (u oz) with a delta function, and carry out the integration

over u
oz

To complete the formulation of the FEL problem we require an equation

describing the evolution of the phase W(toUzo, z). To obtain this equation

we first note that the y component of the particle's canonical momentum is a

constant of motion. In terms of the Lagrangian independent variables z, to

and u 0 the axial particle momentum is given by

, - L (A (z) + A(z,t -)) 2

m c 2  1

- o ao(z,t - T) L E c(z) , (12)Te v a

where (t =  Ct, u0zo t - T(t o , uoz)) M M . Equation (12) can be put

into a more convenient and illuminating form by dropping terms which are not

synchronous with the ponderomotive wave, using the well satisified inequality

IAI << IAwI and assuming highly relativistic axial particle velocities. With

these assumptions, together with the definition of the relative phase 4,

equation (12) takes the form of a generalized pendulum like equation
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2z. ;k -, eL + , e I wlr- --34 T...

7.4'  kwc z 2j _ 2A

m0 c Z 3

+ k / e(A

.z w 2 le w

+ - (< cos >% sin < sin > cos (13)

Y Y.,

where -Yz v i /c In obtaining (13) we have assumed that all the

particles have the same initial axial momentum, i.e., cold beam limit. The

various terms affecting the phase in the generalized pendulum-like equation

can now be distinguished. The first three terms represent the various effi-

ciency enhancement methods available in the FEL. They include: i) tapering

the wiggler wavelength, ii) tapering the wiggler amplitude and iii) D.C.

accelerating potential. The equivalence of these schemes is evident. The

fourth term is due to the self-consistent spatial variation of the radiation

wavelength and can usually be neglected. The fifth and sixth terms represent:

i) the ponderomotive wave due to the beating of the wiggler and radiation

field and ii) the ponderomotive static wave due to the beating of the wiggler

field with itself. If a circularly polarized wiggler field were chosen

instead of a linearly polarized wiggler, the sixth term would not appear.

The final term denotes the effects of space charge (collective) waves on the

phase. The application of a D.C. accelerating potential can be an important

method for enhancing the FEL's efficiency. If instead of a static magnetic

wiggler field an electromagnetic wiggler is employed as a pump source, con-

trol of the wiggler amplitude or wavelength is not possible in a simple

way. Application of a D.C. accelerating field is the most straightforward

method for efficiency enhancement.

9
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b. Trapping Potential.

One promising approach that can be taken to enhance efficiency is

to initially trap a larqe fraction of the particles in the ponderomotiv*

potential wells and adiabatically extract kinetic enerqy from the particles.

To trap a substantial fraction of the electrons the trapping potential must

be large or at least comparable to the initial spread in particle energy.

This implies that a rather large amplitude radiation field must exist at

the input to the interaction region. Using (14) it can be shot" that the

full trapping potential is given by II* /hooc2  (4Y) a

tp0

2v2 y zoB o(A/A w ) where A is the radiation vector potential amplitude.

c. Linear Gain.

As a special case of (13) we consider the low gain, constant

wiggler regime without space charge effects. Equation (13) reduces to the

well known pendulum equation

k k (AA a u, (?k')) in

where the radiation wavelength has also been taken as constant, i.e.,

Dk/az = 0. Using Eq. (lib) and (14) the small signal gain. i.e..

G = (A(z) - A(O))/A(O) for a linearly polarized wiggler field can be

shown to be given by

- -(1/16) 2 LoJ (kVZ) 3 3(s±n 0/8)2/39, ()

where e = Iuz/2, jj = (k + k) - w/v ° = k (w° - )/Wof - w bVYo c k w . It is

worth noting that the gain for a linearly polarized wiggler field is less
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than that for & circularly polarihae wiggler by a facter of tin. Eept for

this factor the gain wesoassioea &to idmatical. That is, the mall signal gai
(10) (15243527)

for a linearly polariaed wiggler M4 for a circularly polarised wigpler -

are identical if the amplitude of the latter is red e by W2, I.e.. if the

amplitude of the circularly polarised wiggler is equal to the me value of the

amplitude of the linearly polarimed wiggler.

Th linear qain empreasion Eq. (IS) does not take saturation effects

into account. When the frequency mimetch is mall.

0 0 0 1 .
traqp

me particles are initially trapped. and the trapped particles cause

saturation to occur within a dort interaction length. Thus, the linear

qain expression Eq. (15) should be used with discretion.

In what follows, the efficiency will be defined as the ratio of the

electromaqnetic energy flux increase to the initial electron kinetic enerqy

flux

11
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we smw present a number of illustrative exmples of an MU utiliuing

a linearly polariaed mmnetic pump. In our examples we have chosen a 25 M1V
" - S x 1 olm-3

electron beam (yo aSO), electron beam particle density of no 0 5 x 10 ca

a magntic wiggler field amplitude of 3 0 5 kG and wavelength of 9 - 2.8 cm.0 V

For these parameters, A a 2.23 x 103 stat volts, k - 2.24 cm * Boa

2.61 x 10 I - 2.65 x 10 and ygo - 36.7. The radiation wavelength is

very nearly IOUr. As the input radiation source, we chose a high power MO2

7 2laser with a power flux of 5 x 10 W/cm , A(O) - 0.1 Stat volts. Using the

expression for the trapping potential we find that, with the above parameters,

- 2% energy spread on the electron beam can be tolerated and substantial

fraction of the electrons can still be trapped. In the following examples,

Eqs. (la-d) and (13) are solved numerically. Figure 2 shows the efficiency,

for a constant parameter wiggler, as a function of axial position for

AW/W °  (w - Wn )/W °  - 1.25 x 10-2 where w°  2 yzc kw . The radiation

field saturates at z 7 70 L. with a net gain of 0.4 and efficiency of 0.7%.w

Figure 3 shows the linear gain as a function of frequency mismatch, Aw/w o .

The dotted curve is the exact gain curve at z a 30 1 in the linear regime

of the interaction. The solid curve is the gain obtained from Eq. (15)

evaluated at 2 - 30 t.
w

In Fig. 4 the gain as a function of axial distance is shown for a

frequency close to resonance, 4w/wO - -7 x 10 "3 . The dotted curve is the

exact gain obtained from the self-consistent non-linear equations, while

the solid curve is the linear gain from Eq. (15). Since Y - 2 x 10-2,

trap

the inequality, Bq. (16), is satisfied, and particles are initially trapped.

The trapped particles cause saturation to occur early in the interaction

12



region and saturation effects result in a decrease in the gain as compared

to the linear gain expression. The linear gain expression does not take

trapping into account and therefore, the linear gain expression in (15)

should be used with discretion.

The next two figures depict the gain and efficiency as a function of

frequency mismatch for linearly polarized and circularly polarized wiggler

fields. In making this comparison the amplitude of the circularly polarized

wiggler is set equal to the rms amplitude of the linearly polarized

wiglr =e, B 1r2. Also, the as 'litude of the circularly
circular linear

polarized radiation field is set equal to the rms amplitude of the linearly

pol-irized radiation field. The particle equations of motion for the two

sets of field polarization are identical except for the longitudinally

oscillating term (sixth term in Eq. (13)) which is associated with the

linearly polarized wiggler field. Figure 5 is a plot of gain at saturation

versus frequency mismatch for both types of wiggler polarizations. Figure 6

shows the efficiency curve versus frequency mismatch again for both polari-

zations of fields. Figures 5 and 6 demonstrate that the longitudinal jiggle

term induced in a linear wiggler can have a quantitative effect on the non-

linear FEL interaction.

As mentioned earlier, efficiency enhancement can be achieved using a

numb~er of schemes. The next figure shows an example in which the wiggler

wavelength I Wz and amplitude B (z) are varied in such a way that the
w w

product I B wis held constant. (26-28,31) The frequency w is chosen so

that the ponderomotive wave is exactly resonant with the particles, i.e.,

Aw 0. If none of the various efficiency enhancement schemes were employed,

the gain would be zero. In Fig. 7, the tapering of the wiggler wavelength

begins at the entrance of the interaction region. The period is changed

from 2.8 cm at z - 0 to 2.66 cm at z - 150£L (0) - 420 cm. The efficiency
w

at the end of the interaction reached 1.15% as shown in Fig. 7. As seen

13



from this figure the efficiency can be much larger by extending the inter-

action length. By increasing the power flux of the input CO 2 laser signal

or wiggler msplitude, the trapping potential can be increased, permitting a

more rapid rate of decrease of the wiggler period.

14
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Z O

LINEARLY POLARIZED MAGNETIC
WIGGLER FIELD A(z

H-" INTERACTION REGION

Fig. 1 - Schematic of the free-electron laser model. The unmodulated
electron bea enters the interaction region from the left. The wiggler
field builds up adiabatically and reaches a constant amplitude for a >0.

0.8%

,o-1.5 10-2

0.6%

0.4%

0.2%

0 2D 40 5o 8D 100

AXIAL DISTANCE z tw(O)

Fig. 2 - Efficiency versus normalized axial distance vithout efficiency

enhancement for &A/w " - 1.25 x 10-2
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-04"00.01 0.02

(110

Fig. 3 -A comparison of the gain from linear gain expression (solid curve),
and gain from non-linear calculation (dashed curve) as a function of frequency
mismatch A/ww0 at z -30 V ()
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I
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EXACT GAIN

0 100 150

AXIAL DISTANCE z fIO1

Fig. 4 - A comparison of the gain from linear gain expression (solid curve)
and gain from non-linear calculation (dashed curve) as a function of axial
distance for a sumll frequency misiatch / = - x 10 7 -

0
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0.5

CIRCULARLY POLARIZED
0.4- WIGGLER

0

cc0.3-

.2-

LINEARLY POLARIZED, \
WIGGLER

0 0.01 0.02

Fig. 5 -A comupariaon of gain at saturation using a linearly polarized
wiggler (dashed curve) and circularly polarized wiggler (solid curve)
versus frequency mismatch -Aw/w
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1.0.

~0.8-

0 CIRCULARLY
POLARIZED

V)

LW LINEARLY
POLARIZED

00.01 0.02

Fig. 6 - A comparison of efficiency at saturation using a linearly polarized
wiggler (dashed curve) and circularly polarized wiggler (solid curve) versus
frequency mismatch --% xa /x
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1.0%
-.%= _ -1.0-

• o0.5% -0.

I (I IfWO0 5 10015

Fig 7- A eampe f efiieny nhaceen by derai h antc,

U.,Dd 0

w l 0% hw 
. 9iU- 0

0 -~0.

wavelength stayed constant, the saturation efficiency is approximately
zero. The efficiency (solid curve) has increased to 1.15% at z - 150 k w(O)
with wigler period w (Z)/Zw (0) (dashed curve) changing as shown.
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